Tuesday 25 April 2017

Talk : Food Allergies: What Are They? Why Do We Have Them?

For April's Cafe Sci, Dr Marcos Alcocer from the School of Biosciences at the University Nottingham comes to talk about Food Allergies: What Are They? Why Do We Have Them?. @Gav Squires was there and has kindly written this guest post summarising the event, with some linkage added by NSB.

With the end of our own vegetable gardens, in our industrialised world, not everything is under our control any more. These days, wherever you go, it's almost a "fashion" to have a good allergy. These adverse reactions to food can range from dizziness, itching, vomiting to diarrhoea. Non-toxic reactions to food can include the enzymatic (e.g. intolerance to lactose, alcohol, galactosemia) or pharmacological (e.g. intolerance to caffeine, acids, tyramine alkaloids, histamine, monosodium glutamate, salicylates or benzoates).

Histamine

Food hypersensitivity can also be immune related and can kill you, unlike something like lactose intolerance, which is just upsetting and painful. Food allergy is immunity going wrong, it recognises things in food as being toxic. In our gut, we have a "sampling device" and everything that we eat is sampled and checked with the immune system. In most of the cases the immune system doesn't respond but if it sees a problem then it activates.

The first time that you encounter an allergen, your body will produce antibodies. For example, for peanuts it will recognise one of the proteins in the peanuts. Cells will now be loaded with antibodies and when these recognise future instances of that allergen, histamines are released. Amongst other things, Histamine causes dilation of blood vessels (reducing blood pressure) and bronchial tubes (which results in difficulty in breathing). In extreme cases this can result in anaphylactic shock.

Structure of an allergy antibody 

It is impossible for your GP to tell you what you are actually allergic to just from your symptoms as they bear no relation to the food that actually caused them. The first paper on food allergies was only published relatively recently - we are only just starting to make the connections. So, while they seem to be a modern fad, they have always been around but people didn't realise what they were.

There were 37 fatalities in the UK between 1992 and 1998:

Peanut - 10
Nuts - 10
Walnut - 5
Uncertain - 4
Seafood - 3
Milk - 2
Chickpea - 1
Nectarine - 1
Banana - 1

We also have the breakdown of where they ate the food that killed them:

Restaurant/Bar - 13
Take-away - 6
Home - 6
Other - 5
Canteen - 3
School - 2
Party food - 2

Roasted Peanuts

Is the prevalence increasing? Yes, it is, but there are problems with the data acquisition. Between 0 and 4 years old, there is a massive incidence of food allergy but most people grow out of it. So, should mothers avoid eating foods that contain allergens while pregnant or while breast feeding? Should parents delay feeding solid food? We don't know. However, there does appear to be one very clear, three-month window between 3 and 6 months in which to make children tolerant.

Atopy, which is inherited hypersensitivity, is increasing. One of the more popular hypothesises about why this is happening is the hygiene hypothesis - the cleaner that you are the more at risk you are. The theory being that too much cleaning can create an immune system that is not used to real life. For example, studies were done in East and West Germany when they were still separate counties. In clean, modern West Germany, atopy rates were 37%, whereas in East Germany they were just 17%.

However, there are other risk factors, such as geography/environment and genetics. For example, Jewish children in the UK were 10 times more likely to suffer from food allergies than those from the same family when they were still in Israel.

There is also a hypothesis that looks at gut microbiotica. Variety of species in the gut is a good indicator of gut health - the more, the better. Allergens react to the bacteria in the gut. We can test this hypothesis by transferring faeces from one animal to another.

Gut Bacteria

What makes an allergen is not well defined - why is one protein an allergen and another not? For example in a Brazil nut, there is one protein that causes a reaction but in a peanut, it can be one of 16.

In the last 10 years, technology advances have allowed us to sequence everything. We can sequence peanut proteins and so we can tell if people will cross-react. Scandinavians and Southern Europeans are both often allergic to apples. However, it is a different protein that causes the reaction. Scandinavians actually get their allergy from Birch trees, which contain the a protein that is also found in apples. The problem with sampling is the time that it takes. A human has around 100,000 proteins but wheat is eight times more complex.

Despite, all of the research, we don't have a cure yet. The only treatment is an adrenaline shot, that will keep you alive for enough time to get to the hospital.

Café Sci returns to The Vat & Fiddle on the 8th of May at 8:00 where Sara Goodacre will talk on Arachnoglobia: Long Journeys by 8-Legged Travellers & Other Stories. For more information, check out the Café Sci MeetUp page - https://www.meetup.com/nottingham-culture-cafe-sci/


Histamine, Antibody, Gut Bacteria

No comments:

Post a Comment